Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting
نویسندگان
چکیده
Wind farms are producing a considerable portion of the world renewable energy. Since the output power of any wind farm is highly dependent on the wind speed, the power extracted from a wind park is not always a constant value. In order to have a non-disruptive supply of electricity, it is important to have a good scheduling and forecasting system for the energy output of any wind park. In this paper, a new hybrid swarm technique (HAP) is used to forecast the energy output of a real wind farm located in Binaloud, Iran. The technique consists of the hybridization of the ant colony optimization (ACO) and particle swarm optimization (PSO) which are two meta-heuristic techniques under the category of swarm intelligence. The hybridization of the two algorithms to optimize the forecasting model leads to a higher quality result with a faster convergence profile. The empirical hourly wind power output of Binaloud Wind Farm for 364 days is collected and used to train and test the prepared model. The meteorological data consisting of wind speed and ambient temperature is used as the inputs to the mathematical model. The results indicate that the proposed technique can estimate the output wind power based on the wind speed and the ambient temperature with an MAPE of 3.513%. & 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method
High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper propo...
متن کاملHybrid Evolutionary Neuro-fuzzy Computational Tool to Forecast Wind Power and Electricity Prices
The intermittence of the renewable sources due to its unpredictability increases the instability of the actual grid and energy supply. Besides, in a deregulated and competitive framework, producers and consumers require short-term forecasting tools to derive their bidding strategies to the electricity market. This paper proposes a novel hybrid computational tool, based on a combination of evolu...
متن کاملWind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms
Accurate quantification and characterization of a wind energy potential assessment and forecasting is significant to optimal wind farm design, evaluation and scheduling. However, wind energy potential assessment and forecasting remain difficult and challenging research topics at present. Traditional wind energy assessment and forecasting models usually ignore the problem of data pre-processing ...
متن کاملDesign and analysis of hybrid systems solar, wind, osmotic for green plants using ant colony optimization algorithm
Nature has always proven that it is able to overcome its problems. However, human manipulation has led to environmental degradations. The dryness of a thousand-year Urmia Lake (a brinewater lake in Iran) is an example of environmental degradation that happened due to successive droughts and construction of dams on the basin of this lake. This study examines methods for the revival of Urmia Lake...
متن کاملELMAN Neural Network with Modified Grey Wolf Optimizer for Enhanced Wind Speed Forecasting
The scope of this paper is to forecast wind speed. Wind speed, temperature, wind direction, relative humidity, precipitation of water content and air pressure are the main factors make the wind speed forecasting as a complex problem and neural network performance is mainly influenced by proper hidden layer neuron units. This paper proposes new criteria for appropriate hidden layer neuron unit’s...
متن کامل